足ることを知らず

Data Science, global business, management and MBA

ML/AI

Day 142 MIT Sloan Fellows Class 2023, ChatGPT 3 "No code advanced techniques in ChatGPT"

Interactive Improvements in CommunicationImproved interaction between ChatGPT and humans can lead to better overall outcomes. Here are some examples of how you can enhance the communication process: 1.Iterative question-answering: Refine y…

Day 140 MIT Sloan Fellows Class 2023, ChatGPT 2 "Basics of Prompt Engineering"

What is "prompt engineering"? Prompt engineering is a relatively new discipline for developing and optimizing prompts to efficiently use language models (LMs) for a wide variety of applications and research topics. Prompt engineering skill…

Day 136 MIT Sloan Fellows Class 2023, M&A and PE 10 "Technical M&A by PE"

How we should evaluate technical capability in M&A from PE perspective? Is there enough room to improve? How was the price? Over-pricing or underestimated? We reviewed three acquistion targets, Seagate-Hard drive manufacturers, McAfee, and…

Day 132 MIT Sloan Fellows Class 2023, ChatGPT 1 "The Impending Training Data Shortage in the ChatGPT Era: Challenges and Consequences""

The ChatGPT era has revolutionized artificial intelligence and language processing, but with these advancements comes a new set of challenges. One of the most pressing concerns is the future shortage of training data. In this article, we'l…

Day 125 MIT Sloan Fellows Class 2023, AI for business 3 "Formula for AI value"

www.youtube.com Formula Problem statement If from <input> we could know <output>, then <someone> could derive a benefit by Inputs(X) What are the inputs X? What does X fail to encode? What problems might this create? Outputs(Y) How is Y constructed? - Automation </someone></output>…

Day 124 MIT Sloan Fellows Class 2023, CSAIL Thesis defence2, Harni Suresh - How to prevent unintentional consequence from AI -

A framework for understanding sources of harm throughout the Machine Learning Life Cycle As I introduced several times, I am really interested in data quality and its impact on AI. www.youtube.com Academic article: A Framework for Understa…

Day 109 in MIT Sloan Fellows Class 2023, AI for business 2 "Risk of AI"

AI would be a true threat to humans? If you are familiar with sci-fi, AI is a definitely threatening technology that potentially destroys human beings as Skynet in Terminator 2 did. But will it really happen? waitbutwhy.com The point is th…

Day 106 in MIT Sloan Fellows Class 2023, AI for business2 "Birth of AI, definition of AI, and emerge of AI"

This course is to learn potential AI roles from various perspectives without any technical deep-dive. The goal of this course is to help you become an architect to draw a blue print. Not a builder. The failure of AI comes from typically ar…

Day 81 in MIT Sloan Fellows Class 2023, Advanced Data Analytics and Machine Learning in Finance 8, SQuAD

Question Answering Tasks in Machine Learning Question answering is one of the major problem sets in NLP, in a nut shell, this is simpler Reading Comprehension problem in GMAT or other types. There are multiple types of questions and texts,…

Day 78 in MIT Sloan Fellows Class 2023, Advanced Data Analytics and Machine Learning in Finance 7, Early stopping and learning rate optimization

What is overfitting? Overfitting occurs when the model has a high variance, i.e., the model performs well on the training data but does not perform accurately in the evaluation set. What is Overfitting in Deep Learning [+10 Ways to Avoid I…

Day 63 in MIT Sloan Fellows Class 2023, Advanced Data Analytics and Machine Learning in Finance 4, clustering

Clustering 101 Clustering is the most typical machine learning of unsupervised learning. It means we don't have training data or correct label, but machine learning automatically put labels, or grouping datasets. In today's article, I will…

Day 59 in MIT Sloan Fellows Class 2023, Managerial Finance4, Bonds-1

Fixed income markets: Issuers: entities that create fixed-income securities in order to raise funds (e.g.,governments, corporations, commercial banks, states, municipalities) Intermediaries: entities that assist issuers in creating and sel…

Day 53 in MIT Sloan Fellows Class 2023, Advanced Data Analytics and Machine Learning in Finance 3, Basis of NLP

NLP = playing with unstructured string data String data is super messy. Before running ML or advanced analytics, we need to cleanse data. Encoding is another tricky issue in text data analysis. Remember, Emoji. We need to understand ASCII …

Day 49 in MIT Sloan Fellows Class 2023, Advanced Data Analytics and Machine Learning in Finance 2, Confusion matrix

The confusion matrix is super confusing. https://www.researchgate.net/figure/Confusion-matrix-and-performance-equations-The-confusion-matrix-included-four_fig1_340034692 Everytime I forget the definition of TP, FP, etc, and metrics as well…

Wikipediaという奇跡- アルゴリズムのないユートピア

www.economist.com 今年の1月15日は、とあるウェブサイトの20歳の誕生日だった。 Wikipediaは、35歳の私が大学生のころ、レポートを書くとき、格好のコピペ元だった。大学の教員もそんなサボりが起こることは心得ていて、Wikiのコピペは大幅減点だったのだが…

AIに代替される職能をみんな勘違いしているのかもしれない

AIに人間の仕事が代替されると言われて結構時間が経っていることに気づいた。 多分初めの方にそれが述べられていたのは、下記の野村総研のレポート。 https://www.nri.com/-/media/Corporate/jp/Files/PDF/news/newsrelease/cc/2015/151202_1.pdf ここでは、…

統計学と機械学習は実際、何が違うのか?

The Actual Difference Between Statistics and Machine Learning Mediumの古いネタを引っ張り出してきた。 英語読める人は、本文を見てほしい。 “The major difference between machine learning and statistics is their purpose. Machine learning models…

Google CloudのCloud AutoMLでパラダイムが変わるかも・・・という話

あんまり普段仕事の話を書かないのですが、お仕事ではもっぱらGoogle Cloudをいじり倒しています。 ちょっと前までは、割とウェブログ系のデータをいじいじとしながら、時系列予測や、ありがちなCV期待値みたいなものをScikit-learnとかKerasでグリグリモデ…

データサイエンティスト給与論

友達がシェアしてたのを見て、ちょっと思うところがあり、こっそり書いてみた。3月の記事だから結構今更だろうか。 今データサイエンティストを目指してる人の7割が5年後に年収350万にしかなれない - データエンジニアの日記上記記事の論旨を説明すると、今…

AI論争はどこへいくのか

Mckinseyから下記リンクのレポートが出た。 How artificial intelligence can deliver real value to companies | McKinseyリンク先のレポートもなかなか読み応えがあって面白いので、是非読んでほしい。業界別にAIの投資や将来機会、レベル格付け等を行って…